If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=193
We move all terms to the left:
x^2-(193)=0
a = 1; b = 0; c = -193;
Δ = b2-4ac
Δ = 02-4·1·(-193)
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{193}}{2*1}=\frac{0-2\sqrt{193}}{2} =-\frac{2\sqrt{193}}{2} =-\sqrt{193} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{193}}{2*1}=\frac{0+2\sqrt{193}}{2} =\frac{2\sqrt{193}}{2} =\sqrt{193} $
| (7x+3)(2x−5)=0 | | 5x+7=-‐13 | | 3x-1=5x-18 | | 5x+72=287 | | (2x-5)^2=64 | | 5x,+10x=1500 | | 7y-23=2y+32 | | 8x–10=2(4x–10) | | (x+25)°=180 | | 0.7x+8=1 | | 26=7(g−9)12 | | 17x+14°=4x-2° | | c/2=16 | | 4(x-5)+8x=16-4 | | 64=n-120 | | 16+x–61=109 | | 4x+36=2x-18 | | x2=261 | | 6x+43=7x+38 | | 2a+12=5a-9 | | 2x/3-26=x/4+94 | | x-25=5x+7-11x+3 | | 0,02x+4=2 | | 4/5x+5/8=4x | | 4y-2y+5y=0 | | √3x=x+20 | | 4x=4-3x+2x | | 3(2x-4)-(4x+2)=-(-x-1)+10 | | 2(y+24)=1000 | | 54n3=2 | | 2(y+24)=100 | | -2w-13=17 |